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Why PLS-SEM is suitable for complex modeling?  

An empirical illustration in Big Data Analytics Quality 

 
 

Abstract 

The emergence of multivariate analysis techniques transforms empirical validation of theoretical 

concepts in social science and business research. In this context, structural equation modeling 

(SEM) has emerged as a powerful tool to estimate conceptual models linking two or more latent 

constructs. This paper shows the suitability of the partial least squares (PLS) approach to SEM 

(PLS-SEM) in estimating a complex model drawing on the philosophy of verisimilitude and the 

methodology of soft modelling assumptions. The results confirm the utility of PLS-SEM as a 

promising tool to estimate a complex, hierarchical model in the domain of big data analytics 

quality (BDAQ).  
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1. Introduction 

Foresight of phenomenon and power over them depend on knowledge of their sequences, and 

not upon any notion we may have formed respecting their origin or inmost nature. 

Mill (1865,p.266) 

 

Quantitative research has made an enormous impact on social science and business research 

through its positivist epistemological belief since John Stuart Mill and the 19
th

 century 

experimental researchers. This impact has gained a momentum by satisfying the need for causal 

modeling and empirical validation of theories to explain complex concepts (Blalock 1964; 

Bagozzi 1980; Huber and McCann 1982; Sawyer and Peter 1983; Iacobucci and Hopkins 1992; 

Hair et al. 2012; Stafford 2011). In this line of development, structural equation modeling (SEM) 

has emerged as a powerful multivariate analysis technique over the last four decades combining 

the features of the principal components and the regression analysis (Hair, Ringle, and Sarstedt 

2012). Between the two approaches in SEM, the covariance based approach (CBSEM) is useful 

to confirm theoretically established relationships, however, this technique has distributional 

constraints (multivariate normality of the observed indicators) in estimating a large model (Chin 

1998b; Fornell and Bookstein 1982; Hair, Ringle, and Sarstedt 2011). As a result, the focus of 

CBSEM mostly is on small conceptual models, which results into hindering the development and 

validation of large, complex models (Chin, Peterson, and Brown 2008).  

 

This study refers a complex model to a large-hierarchical model which consists of 10 or more 

constructs and 50 or more items (Chin 2010). PLS-SEM (Wold 1975; Lohmöller 1989; 

Tenenhaus and Tenenhaus 2011) gains prominence in estimating such a complex-hierarchical 
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model by eliminating the ambiguity of incorrect solutions (Becker, Klein, and Wetzels 2012; 

Wetzels, Odekerken-Schroder, and Van Oppen 2009). However, some researchers have 

questioned PLS-SEM’s rigor (e.g.,Guide Jr and Ketokivi 2015; Rönkkö et al. 2016) despite its 

well established roots in management information systems (Chin and Gopal 1995; Chin 1998b; 

Ringle, Sarstedt, and Straub 2012a; Chin, Marcolin, and Newsted 2003; Marcoulides, Chin, and 

Saunders 2009), strategic management (Sarstedt, Ringle, and Hair 2014; Bentler and Huang 

2014) and marketing (Fornell and Bookstein 1982; Chin, Peterson, and Brown 2008; Hair et al. 

2012). Thus, in an effort to illuminate the rigor of PLS-SEM in estimating a complex model, we 

validate a hierarchical, reflective-formative model in the context of big data analytics quality 

(BDAQ).  

 

 Big data has emerged as the new oil, new soil, the next management revolution (McAfee 

and Brynjolfsson 2012b) and the ultimate force behind “transforming management theory and 

practice (George, Haas, and Pentland 2014). The extant literature shows that more than 91% of 

Fortune 1000 companies have  embraced big data analytics (Kiron, Prentice, and Ferguson 2014) 

and achieved 5-6% higher growth in firm performance than competitors (Akter and Wamba 

2016). Despite its skyrocketing optimism, many firms still struggle to capitalize on big data 

analytics (BDA) to derive quality insights.  Competitive advantage from BDA is waning as 

managers grapple to understand the complexity of analytics quality in the emerging data 

economy (Ransbotham, Kiron, and Prentice 2016). Thus, for empirical illustration, the study 

first, presents an overview of PLS-SEM applications to estimate a  complex model in the context 

of BDA and prediction oriented analysis (Gefen, Straub, and Rigdon 2011; Rigdon 2014). We 

define BDA as an integrated approach to collect and process big data in order to provide 
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actionable insights for managerial decision making. Second, the study applies PLS-SEM to 

develop and validate a complex big data analytics quality (BDAQ) model and its impact on 

business value (BVAL) and BDA satisfaction (BDAS) in a nomological network. We define 

BDAQ as user perceived analytics quality model that measures overall excellence or superiority 

of the BDA platform. Conceptually, this study extends quality modelling in big data using the 

resource based theory (RBT) and methodologically, it presents the rigor of PLS-SEM as the 

ultimate tool for complex modeling. The remainder of the paper is organized as follows: Section 

2 focuses on literature review and the conceptual model; Section 3 discusses the research 

methodology; Section 4 highlights the findings based on empirical illustration; Section 5 

discusses the techniques for assessing a complex model and finally, section 6 concludes the 

paper with limitations and future research directions.  

2. Literature review 

2.1. PLS-SEM 

It struck me that it might be possible to estimate models with the same arrow scheme by an 

appropriate generalization of my LS algorithms for principal components and canonical 

correlations.  

(Wold 1982, p.200) 

 

There is no doubt that PLS-SEM has become very popular for survey research in recent years 

since its introduction in 1966 by Herman Wold. The development of PLS-SEM is largely driven 

by its advantages in distributional assumptions, absence of factor indeterminacy and models with 

more parameters than observations (Dijkstra and Henseler 2015a). The PLS-SEM is regarded as 

a variance based approach to SEM (Chin, Marcolin, and Newsted 2003; Tenenhaus 2008) 

becomes appreciated for its ability to estimate both composites and factors (Henseler, Hubona, 
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and Ray 2016).  As an alternative to CBSEM, PLS-SEM was developed to estimate complex 

relationships and emphasize prediction while simultaneously relaxing the demands on data and 

specification of relationships (Dijkstra 2010; Chin, Peterson, and Brown 2008). Differently from 

CBSEM, PLS-SEM aims at estimating latent variable proxies (also called latent variable scores) 

according to a postulated model via an iterative sequence of ordinary least-squares regressions 

(Wold 1975, 1985). Recent publications on PLS-SEM using hierarchical modeling (Wetzels, 

Odekerken-Schroder, and Van Oppen 2009; Becker, Klein, and Wetzels 2012; Akter, D’Ambra, 

and Ray 2010; Akter, D'Ambra, and Ray 2011), consistent PLS (PLSc) for factor models 

(Dijkstra and Henseler 2015b), heterotrait-monotrait ratio of correlations (HTMT) for 

discriminant validity (Henseler, Ringle, and Sarstedt 2015),  overall model fit using 

bootstrapping (Dijkstra and Henseler 2015a), interaction effects (Chin, Marcolin, and Newsted 

2003; Fassott, Henseler, and Coelho 2016) and model specification (Sarstedt et al. 2016) 

providing a proof that it is able to define latent variables scores with well-defined statistical 

relations among them. 

One of the main characteristics of the PLS-SEM is that it is able to estimate a model with 

a large number of latent variable and indicators even with a small sample size (Chin, Peterson, 

and Brown 2008). For complex models, PLS-SEM ensures factor determinacy by directly 

estimating latent variable scores, factor identification by introducing flexible residual covariance 

structure and above all, robust prediction in the context of small sample size, asymmetric 

distribution and interdependent observations (Chin 1998a, 1998b; Wetzels, Odekerken-Schroder, 

and Van Oppen 2009). These distinctive methodological features make PLS-SEM a possible 

alternative to the more popular CBSEM approaches for complex modeling (Henseler, Ringle, 

and Sinkovics 2009; Hair et al. 2012). As such, PLS-SEM is more suitable in a complex setting 
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to validate large-hierarchical models by providing robust solutions (Chin, Peterson, and Brown 

2008).  This is echoed by Chin (2010, p.661), “It is under this backdrop of high complexity that 

PLS, regardless of whether applied under a strong substantive and theoretical context or 

limited/exploratory conditions, comes to the fore relative to CBSEM”.  

2.2. Complex Models and PLS-SEM 

Truth, Existence, Knowledge, Causality, Identity, Goodness: these are the principal notions 

which philosophers examine. Intelligent persons normally have thoughtful and useful lives 

without pausing to look into these notions and into the connections between them. Once one 

starts to look into them, it is difficult to stop. 

 

Stuart Hampshire (Pyke 2011) 

 

The extant literature in social science and relevant research philosophies have contributed to the 

field of complex modeling using the philosophy of verisimilitude (i.e., trust likeness or nearness 

to the truth). For example,  Meehl (1990) states that most models struggle to capture reality and 

suffer imperfection due to the imbalance between incompleteness and falseness. Whereas 

falseness represents the contradictions between the research model and the real world, 

incompleteness focuses on the ability to capture complex reality. Although these two 

philosophies play an important role in estimating reality, “Most SEM studies seem to focus on 

the falsity of a model as opposed to its completeness. In part because of algorithmic constraints, 

few SEM models are very complex (i.e., have a large number of latent variables). Emphasis on 

model fit tends to restrict researchers to testing relatively elementary models representing either 

a simplistic theory or a narrow slice of a more complex theoretical domain” (Chin, Peterson, and 

Brown 2008, p.294). The philosophy of verisimilitude urges to recognize that “scientific theories 

are never impeccably veridical in all aspects” (Rozeboom 2005, p.1335) and thus, practical 
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theory adjudication should concentrate more on how a research model is true and to what extent 

it is true rather than whether a research model is true or not.  

In exploring CBSEM, Shah & Goldstein (2006) identified an average of 4.4 latent variables  and 

a mean of 14 indicators per model in a review of 93 articles. By comparison, in exploring PLS 

based models, Ringle et al. (2012a) identified an average of 8.12 latent variables and 27.42 

indicators per model in a review of 65 studies published in MIS Quarterly. Hair et al. (2012) 

identified an average of 29.55 indicators per PLS path model in 204 studies of top 30 marketing 

journals. These results highlight the suitability of PLS-SEM as a tool to estimate a large, 

complex model (Chin, Peterson, and Brown 2008). In a similar spirit, Ringle et al. (2012b) 

comment “…prior studies appearing in scholarly journals (e.g., Reinartz, Haenlein, and Henseler 

2009)—including those more critical of the PLS-SEM method (e.g., Lu et al. 2011) —indicate 

that PLS-SEM overcomes problematic model identification issues and that it is a powerful 

method to analyze complex models using smaller samples”. Dijkstra and Henseler (2015a,p.10) 

support that PLS-SEM has “the possibility of estimating models having more variables or 

parameters than Observations”. Although few studies in CBSEM focused on developing a large 

model using small sample size; these models are restricted by 3 items per LV  to achieve 

goodness of fit (e.g., Marsh, Hau, and Wen 2004; Barendse, Oort, and Garst 2010). This 

constraint is criticized by MacCallum (2000) as it obstructs capturing the complexity of an 

empirical phenomenon. In this context, Blalock (1979, p.881) states, “reality is sufficiently 

complex that we will need theories that contain upward of fifty variables if we wish to 

disentangle the effects of numerous exogenous and endogenous variables on the diversity of 

dependent variables that interest us”. He further adds that there is a natural imbalance between 

generalizability and parsimony in developing models, so ‘parsimony’ could be sacrificed in 
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building complex models to describe more diverse settings and populations. In this case, PLS-

SEM enjoys certain advantages in estimating complex models because of its flexible iterative 

algorithm and the soft modeling assumptions. Lohmoller (1989, p.64) comments, “It is not the 

concepts nor the models more the estimation techniques which are ‘soft’, only the distributional 

assumptions”.  Because of its flexibility in modelling both composites and factors, McDonald 

(1996) identifies PLS as a sophisticated multivariate analysis platform whereas Hair, Ringle, and 

Sarstedt (2011) label it as a silver bullet. As such, scholars across disciplines (e.g., Fornell and 

Bookstein 1982; Hulland 1999; Chin 2010; Hair et al. 2012; Chin, Peterson, and Brown 2008; 

Sarstedt et al. 2016; Henseler, Hubona, and Ray 2016) put forward PLS-SEM as tool of trade for 

survey research to capture complexity in models.  

Our review examines all empirical studies using PLS-SEM published in the Production 

Planning & Control (PPC) journal from 2010 to 2015 indicates an average number of 5.4 

constructs and 33.6 indicators per PLS-SEM model to embrace the complexity in capturing 

reality. Table 1 also shows that PLS-SEM studies in PPC used an average number of 194.8 

samples.  Although small sample size is the most frequently cited reason for using PLS-SEM, the 

review indicates that operations researchers used relatively large sample size which is clearly 

immune to threats from data inadequacies (Ringle, Sarstedt, and Straub 2012a). Overall, this 

review reflects the flexibility of PLS-SEM in handling large models with fewer restrictions.  

 

INSERT TABLE 1 HERE 

2.3. Big data analytics quality 

Big data refers to the massive amount of structured and unstructured data which has four 

characteristics, that is, volume (i.e., huge quantity), variety (i.e., number, text, image, voice and 
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video), velocity (i.e., speed) and veracity (i.e., reliability of data) (Fosso Wamba et al. 2015; 

Akter et al. 2016). According to Sanders (2016,p.28), “Big data without analytics is just a 

massive amount of data. Analytics without big data are simply mathematical and statistical tools 

and applications”. We define big data analytics (BDA) as an integrated data collection and 

analysis process to provide solid insights for managerial decision making (Akter and Wamba 

2016). Although there is high adoption of BDA in recent years to obtain competitive advantage, 

many companies face enormous challenges to derive quality insights from data (Ransbotham, 

Kiron, and Prentice 2016). We define big data analytics quality (BDAQ) as the overall 

excellence or superiority of BDA platform perceived by its users. BDAQ also refers to the 

distinctive attribute of the overall analytics platform to produce valuable insights for business (Ji-

fan Ren et al. 2016). The extant literature shows that the quality of technology and information 

determine the extent of business value in big data environment. In this regard, Barton and Court 

(2012) argue that both technology and information quality work as an ecosystem in producing 

solid insights for managers. Technology quality refers to the quality of the analytics platform that 

is reflected in system reliability, system adaptability, system integration and system privacy 

(Davenport, Barth, and Bean 2012; Nelson, Todd, and Wixom 2005). On the other hand, 

information quality represents the quality of data driven insights in terms of currency, format, 

accuracy and completeness (Nelson, Todd, and Wixom 2005). Wixom, Yen, and Relich (2013) 

show that the quality of technology and information in big data environment influence business 

value, which refers to the strategic benefits for firms. In addition to business value, scholars 

(Davenport 2006; McAfee and Brynjolfsson 2012a) also identify that the quality parameters 

influence user satisfaction, that determines sustainability of the analytics platform.  
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3. Research Model for Empirical Illustration 

Drawing the Resource based Theory (RBT), the study views analytics quality as an analytics 

resource only if it is rare and costly to imitate (Ray, Muhanna, and Barney 2005). The RBT of 

BDA argues that BVAL and BDAS depend on the quality of resources that are valuable, rare, 

inimitable and properly organised. The RBT also focuses on complex connections among the 

heterogeneous resources, such as system and information quality, to examine BVAL and BDAS. 

Thus, using RBT as a theoretical foundation, the study examined commonly found dimensions of 

BDA that influence quality perception. The review identified two primary dimensions of BDAQ, 

that is, technology quality and information quality (Ji-fan Ren et al. 2016). BDAQ also emerged 

as a hierarchical construct throughout our review and theoretical exploration, which consists of 

two primary dimensions and eight subdimensions as shown in Figure 1 (Davenport, Barth, and 

Bean 2012; Davenport and Harris 2007; McAfee and Brynjolfsson 2012b; Fosso Wamba et al. 

2015). Therefore, based on the systematic literature review, this study identifies BDAQ as a 

complex construct model because of its large number of dimensions and subdimensions under 

multiple hierarchies (See Figure 1).  

INSERT FIGURE 1 HERE 

We specify the proposed BDAQ model as a higher-order, reflective-formative model as the first-

order dimensions are reflective (Mode A) and the higher-order dimensions are formative (Mode 

B) (Chin 2010; Ringle, Sarstedt, and Straub 2012b). We define the proposed quality model as a 

complex model because it involves large number of constructs and indicators under multiple 

levels and dimensions (Edwards 2001; Jarvis, MacKenzie, and Podsakoff 2003; MacKenzie, 

Podsakoff, and Jarvis 2005; Law and Wong 1999; Netemeyer, Bearden, and Sharma 2003). As 

part of embedding the higher-order quality model in a causal network, the study models it with 
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criterion variables, such as, business value and satisfaction. We define ‘satisfaction’ as the 

overall attitudinal response by the big data analysts toward BDA and ‘business value’  as the 

degree of perceived benefits to the organization at a strategic level, e.g., competitive advantage 

(Wixom, Yen, and Relich 2013).  The impact of BDAQ on BVAL is a dominant concern in big 

data environment (Wixom, Yen, and Relich 2013). The significance of the association between 

BDAQ and BVAL was highlighted by the extant literature (Lavalle et al. 2011; Wixom, Yen, 

and Relich 2013; Ji-fan Ren et al. 2016). Thus, we postulate that: 

H1:  BDAQ has a significant positive impact on business value (BVAL). 

The extant literature identifies that the excellence of BDAQ has a significant positive 

impact on business value, which ultimately drives satisfaction of big data analytics users (Ji-fan 

Ren et al. 2016). This study argues that the assessment of BDAQ results in an affective or 

emotional response, such as BVAL and BDAS. In this regard, Golder et al. (2012) state that 

“[p]ositive quality disconfirmation increases satisfaction; negative quality disconfirmation 

decreases satisfaction”. Thus, this study explores the link between quality-value-satisfaction and 

posits that: 

H2:  Business value (BVAL) has a significant positive impact on user satisfaction (BDAS). 

H3:  BDAQ has a significant positive impact on satisfaction. 

The study identifies BVAL at the heart big data research because it will be directly 

influenced by BDAQ (Wixom, Yen, and Relich 2013). BVAL is identified as a mediator in the 

study because, first, BDAQ (predictor) influences BVAL (mediator); second, BVAL influences 

BDAS and, finally, BDAQ influences BDAS (i.e., the dependent variable) without any influence 

of the mediator (Baron and Kenny 1986). Thus, the mediating role of BVAL in big data analytics 

research is important to explore: 
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H4: Business value, as a mediator, influences the relationship between BDAQ and 

satisfaction. 

 

 4. Methodology 

4.1. Data Collection and Sampling 

Table 2 presents the operational definitions of all the dimensions and subdimensions of BDAQ. 

All the scales to measure BDAQ were drawn from prior literature and adapted to suit the context. 

The study measured all the first-order constructs using 7 point Likert scale (i.e., strongly disagree 

- strongly agree) except satisfaction, which was measured using a 7 point semantic differential 

scale (i.e., very dissatisfied -very satisfied). Data were collected from the 302 big data analysts in 

the US and France using a leading market research firm. Specifically, the sample includes 150 

valid responses from the France and 152 from the U.S.   

 

INSERT TABLE 2 HERE 

4.2. Data Analysis 

The study applied PLS-SEM to estimate a hierarchical, reflective-formative BDAQ construct in 

order to avoid the limitations of CBSEM regarding improper solutions or empirical under 

identification (Chin 2010; Wetzels 2009). Due to the soft modeling assumptions, application of 

PLS-SEM helps in avoiding positively-biased model fit indices for our large-complex model 

(Chin and Newsted 1999; Hair et al. 2012; Hair, Ringle, and Sarstedt 2011), which represents 

13 latent constructs (i.e., 8 first-order + 2 second-order + 1 third-order + 2 outcome constructs) 

and 82 items (24+24+24+6+4). Indeed, this is a challenging context for CBSEM based studies 

“due to the algorithmic nature requiring inverting of matrices” (Chin 2010, p.661). Therefore, the 
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study favored PLS-SEM to remove the uncertainty of inadmissible solutions for a large, complex 

model both in exploratory and confirmatory settings (Hair, Ringle, and Sarstedt 2011; Hulland, 

Ryan, and Rayner 2010). In this context, Chin (2010, , p.660) states that “[i]t should not be 

construed that PLS is not appropriate in a confirmatory sense nor in well researched domains”. 

The study uses the approach of repeated indicators suggested by Wold (cf.Lohmöller 1989, p. 

130-133), Akter, D'Ambra, and Ray (2011) and Becker, Klein, and Wetzels (2012) in estimating 

the hierarchical BDAQ model. 

5. Findings 

5.1. The Measurement Model 
 

The study used SmartPLS 3.0 (Ringle, Wende, and Becker 2015) to estimate the measurement 

properties of the complex, hierarchical BDAQ model. Specifically, the study applied 

nonparametric bootstrapping (Efron and Tibshirani 1993; Chin 2010) with 5000 replications to 

obtain the standard errors of the estimates (Hair et al. 2013) and a path weighting scheme for the 

inside approximation.  

Table 3 presents measurement properties of the first-order model in order to examine 

reliability, convergent validity and discriminant validity. The key psychometric properties 

including loadings of manifest variables, Cronbach’s alphas, composite reliabilities (CRs) and 

average variance extracted (AVEs) have confirmed scale reliability (Chin 2010) by successfully 

meeting the threshold of 0.7, 0.7, 0.8 and 0.5 respectively. The convergent validity was ensured 

as all the items load much higher on their corresponding constructs than on other constructs. The 

study also calculated the square root of the AVE in the Table 4 to ensure discriminant validity 

(Fornell and Larcker 1981). As such, the findings of the measurement model provided adequate 
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evidence of reliability, convergent validity, and discriminant validity. These findings provide the 

confidence to confirm all the hypothesized relationships of the structural model.  

INSERT TABLE 3 HERE 

 

 

INSERT TABLE 4 HERE 
 

In Table 5, this study shows the findings of the complex-higher-order BDAQ model. The study 

estimated the third-order BDAQ construct, which consists of 2 second-order formative constructs 

(technology quality and information quality) representing 24 (3+3+3+3+3+3+3+3) valid items. 

Since both the second and third-order constructs are formative, thus, we estimated the weights of 

items of higher-order constructs which are significant at p < 0.05. The findings show minimum 

evidence of collinearity as the variance inflation factor (VIF) of all items was less than 5. 

Table 5 shows that the degree of explained variance of the third order BDAQ construct is 

explained by second-order technology quality (58%) and information quality (49%). 

Accordingly, second-order constructs are explained by its first-order dimensions, such as 

information quality is explained by completeness (27%), currency (37%), format (26%) and 

accuracy (24%). The findings ensure that all the paths are significant at p < 0.001 both at the 

first-order and higher-order level. The study analyzes the implications of these results in the 

discussion section. 

INSERT TABLE 5 HERE 

 

5.2. The Structural Model 

 

This study confirms the nomological validity of BDAQ model by examining its relationship with 

BVAL and BDAS. In order to assess the nomological validity, the study uses BVAL and BDAS 

with the hierarchical BDAQ construct. In the main effects model (Figure 2), the findings provide 
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a standardized beta of 0.797, 0.175 and 0.681 respectively from BDAQ-BVAL, BVAL-BDAS 

and BDAQ-BDAS. Path coefficients are significant at p < 0.05, thus support H1, H2 and H3 (see 

Table 6).  These results also confirm the significance of BVAL as a partial mediator between 

BDAQ and BDAS, which explains about 17% (0.797*0.175 /0.797*0.175+0.681) of the total 

effect of BDAQ on BDAS.  

INSERT FIGURE 2 HERE 

INSERT TABLE 6 HERE 

5.3. An assessment of the PLS-SEM based complex model 

This study applied PLS-SEM in estimating the complex, hierarchical research model with 

mediating effects. Although PLS-SEM successfully validated the research model, this study 

investigated the significance of model fit, predictive relevance and unobserved heterogeneity to 

establish further rigor. Model fit is essential to establish conjectures (Tenenhaus et al. 2005; 

Henseler, Hubona, and Ray 2016), predictive relevance (Q
2
 ) is critical to check the extent of 

reproduction of observed values and finally, unobserved heterogeneity is important for 

identifying significant heterogeneity in data which can lead to bias parameter estimates and 

invalid statistical conclusions (Esposito Vinzi et al. 2008). The findings show that the study 

achieved an adequate GoF value (> 0.36), standardized root mean square residual (SRMR) (< 

0.080) and Q
2
 (> 0.50). Furthermore, to determine unobserved heterogeneity, we applied 

REBUS-PLS which detects two equal size groups in the sample (US vs. French). However, only 

few slightly significant differences have been observed between model parameters applying to 

the two detected groups. The presence of unobserved heterogeneity in the data has to be 

discarded in our case. This may due to the small sample size (i.e., n=151) for each of the detected 

groups.     
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6. Discussion  

The study answered the key question posed by the research whether PLS-SEM can estimate a 

complex model. The findings illustrate that PLS-SEM entail the flexibility of soft modelling 

assumptions in validating a reflective-formative, hierarchical quality model in big data analytics 

research. According to Jacoby (1978, p.91), “we live in a complex, multivariate world [and that] 

studying the impact of one or two variables in isolation, would seem……relatively artificial and 

inconsequential”. Thus, there is huge possibility of PLS-SEM based research in complex, 

predictive settings, such as the big data environment (Barclay, Higgins, and Thompson 1995; 

Hulland 1999; Lohmöller 1989; Lohmoller 1988; Wold 1980, 1985; Chin 1998a, 2010; Dijkstra 

2010).  

This study explained in detail the methodological gestalt of complex modeling using 

PLS-SEM in order to demonstrate why this study is a leap forward. Since the soft modeling 

assumptions of PLS-SEM facilitate developing complex models both in theoretical and applied 

research contexts, it has immense potential to capture the complexity of causal modeling. Indeed, 

PLS-SEM is best suited for complex models especially when the primary objective is prediction, 

the focus is on explaining variance of large number of variables and the sample size is small 

(Hulland, Ryan, and Rayner 2010). For example, the complex model in our study has robustly 

explained variances of 13 latent variables, 82 (24+24+24+6+4) indicators with 302 samples. The 

application of PLS-SEM makes it possible to extend the theoretical and managerial contributions 

of the study. Theoretically, the study contributes in several ways. First, the study offers a 

conceptual framework integrating RBT and BDAQ in order to provide a theoretical synergy to 

work with big data against the backdrop of analytics studies that show mixed results in business 

value creation.  Second, extending the RBT, the study proposes a quality dominant logic in BDA 
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research with two dimensions (i.e., technology quality and information quality) and eight sub-

dimensions (i.e. system reliability, system adaptability, system integration and system privacy as 

sub-dimensions of technology quality, and completeness, accuracy, format and currency as sub-

dimensions of information quality). Third, the study has identified a full, yet tightly entangled, 

set of dimensions that help predict the quality of BDA and their effects on business value and 

satisfaction. Finally, the research presents rigour by conceptualizing all the dimensions, 

developing their scales and estimating the mediating effects of BVAL on BDAQ-BDAS link. 

Highlighting the importance of mediating effects, Iacobucci (2009, p.673) states  “If mediation 

clarifies the conceptual picture somewhat, with the insertion of just one new construct— the 

mediator—imagine how much richer the theorizing might be if researchers tried to formulate and 

test even more complex nomological networks”. Practically, the proposed BDAQ model presents 

practitioners with an instrument for investigating a holistic quality analysis and design of 

analytics. The results highlight that only having a sound technology platform is not adequate to 

ensure solid insight from analytics platform. Although firms invest lot of resources to improve 

analytics platform, sophisticated insights explaining how BDA platform can improve BVAL and 

BDAS deserve equal attention. The findings clearly show how to tap into BDAQ to influence 

business outcomes. Practitioners now can have a coordinated focus to ensure the simultaneous 

quality of technology and information. Overall, these findings provide the blueprint to identify 

and improve a specific quality dimension of big data analytics at different levles. 

7. Limitations and Future Research Directions 

Although PLS-SEM is a preferred technique for complex modeling in social science and 

business research, there are few challenges that need to be addressed in order to establish it as an 

esoteric method. For example, first, PLS-SEM should have the flexibility of imposing constraints 
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on model coefficients (weights, loadings, path coefficients) in order to specify any information 

or conjectures available a priori in estimating model parameters (Vinzi et al. 2010). Second, this 

approach should allow specific treatment of categorical variables, outliers, non-linearity and 

mutual causality both in measurement and structural models, which can lead toward estimation 

of interaction and quadratic effects. Third, application of PLS methods should clarify both 

observed heterogeneity (Sarstedt, Jörg, and Christian 2011) and unobserved heterogeneity 

departing from the assumption that all individuals act in a similar fashion (Becker et al. 2013). 

Fourth, PLS studies should pay serious attention to an adequate statistical power and 

representativeness of data in the context of inferential statistics using small sample size 

(Marcoulides, Chin, and Saunders 2009). Fifth, PLS models can take into account feedback 

loops and model fit indices in order to leverage its application as an SEM tool (Henseler, 

Hubona, and Ray 2016). Finally, future research can explore non-linear effects, parameter bias 

under Mode A and B, population type and data conditions in the domain of complex modeling 

(Sarstedt et al. 2016). The limitations mentioned in the study represent exciting avenues for PLS-

SEM researchers to establish it as a powerful platform for complex modeling. Drawing on the 

arguments of Hair et al. (2012; 2011) and Reinartz et al. (2009), Ringle et al. (2012b, p.vii) state 

that “… PLS-SEM can indeed be a “silver bullet” in certain research situations (e.g., when 

models are relatively complex and representative sets of data are rather small”. In addition to the 

analysis tool, future research can evaluate the stability of the research model by using objective 

measures, collecting longitudinal data and recruiting large samples across various industries. 

Theoretically, the dimensions of the BDAQ model could be extended by adding talent quality 

due to the ability of data scientists in generating meaningful insights and gaining competitive 
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advantages. Since BDA is transforming operations and enhancing firm performance, future 

research can also investigate the impact of analytics culture in achieving business outcomes.  

8. Conclusion 

Overall, our study of complex modeling answers a salient question raised by Chin (2010, p.645), 

“...whether the goal is to explain the covariances of a relatively small set of measured items 

based on a few underlying latent constructs or to focus on the complex interrelationships among 

a large set of factors that more closely mirrors the study context”. Drawing on the philosophy of 

verisimilitude (Rozeboom 2005; Meehl 1990), we propose that PLS-SEM may prove highly 

useful in developing and validating complex models especially when the focus is on embracing 

completeness (Meehl 1990), capturing reality (Cudeck and Henly 2003) or, reflecting the true 

parameters in the study. Therefore, the study concludes that PLS-SEM is a modest and realistic 

technique to establish rigor in complex modeling, which reflects Wold’s (1982) viewpoint: 

“There is nothing vague or fuzzy about soft modeling; the technical argument is entirely 

rigorous”. 
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List of Tables 
 

Table 1. Model parameters using PLS-SEM in PPC (2010-2015) 

 
Studies Sample size Constructs Items Context 

(Clegg, Gholami, and 

Omurgonulsen 2013)  

183 5 30 Quality management and performance 

(Ren et al. 2015)  110 6 22 Inter-organisational value co-creation 

in supply chain 

(Lee et al. 2015) 119 3 16 Greening the supplier, environmental 

performance and competitive 

advantage. 

(Kotzab et al. 2015)  274 4 38 Supply chain management 

(Ahmad and Mehmood 

2016) 

288 9 62 Enterprise systems and performance of 

future city logistics 

Average 194.8 5.4 33.6  

 

Table 2. Construct and definitions 
Construct and definitions 

 

Sources 

BDA technology quality is defined as systems reliability, system 

adaptability, system integration, and system privacy. System reliability 

refers to the degree to which the BDA is reliable over time; System 

adaptability refers to degree to which the BDA can adapt to a variety of 

user needs and changing conditions; system integration refers to the 

ability to integrate various sources of data to produce meaningful 

insights; and finally, system privacy refers to the degree to which the 

BDA system is safe and protects user information. 

 

(Nelson, Todd, and Wixom 2005); 

(Parasuraman, Zeithaml, and Berry 

2005) 

 

BDA Information quality is defined as the completeness, accuracy, 

format, and currency of information produced by BDA. Completeness 

indicates the extent to which the user perceives that BDA provide all the 

necessary information; accuracy focuses on the perceived correctness of 

information; format refers to the perception of how well the information 

is presented; and, finally, currency refers to the user’s perception of the 

extent to which the information is up to date. 

 

(Wixom and Todd 2005) 

 

BDA Business value is defined as the strategic value refers to the degree 

of perceived benefits to the organization at a strategic level, e.g., 

competitive advantage.   

 

(Gregor et al. 2006) 

BDA satisfaction refers to the users' affect with (or, feelings about) 

BDAQ. 

 

(Spreng, MacKenzie, and Olshavsky 

1996), 

 

 

 

 

 

 



   

Table 3. Psychometric Properties for First-order Constructs 
 

Dimensions Subdimensions Items Loadings Alpha CR AVE 

Technology 

Quality 

System 

Reliability 

The system operates reliably for the analytics. 

The system performs reliably for the analytics. 

The operation of the system is dependable for the analytics. 

0.928 

0.933 

0.935 

0.952 0. 952 0.868 

System 

Adaptability 

The system can be adapted to meet a variety of analytics needs. 

The system can flexibly adjust to new demands or conditions during analytics. 

The system is flexible in addressing needs as they arise during the analytics. 

0.907 

0.918 

0.897 

0.933 0.933 .823 

System 

Integration 

 

The system effectively integrates data from different areas of the company. 

The system pulls together data that used to come from different places in the company. 

The system effectively combines different types of data from all areas of the company. 

0.923 

0.908 

0.938 

0.945 0.945 0.852 

System Privacy The system protects information about personal issues. 

This system protects information about personal identity. 

The system offers a meaningful guarantee that it will not share private information. 

0.912 

0.942 

0.926 

0.948 0. 984 0.859 

Information 

quality 

Completeness The business analytics used: 

____ provides a complete set of information. 

____ produces comprehensive information. 

____ provides all the information needed. 

0.885 

0.895 

0.832 

0.903 0.904 0.759 

Currency ____ provides the most recent information. 

____ produces the most current information. 

____ always provides up-to-date information. 

0.919 

0.776 

0.883 

0.932 0.932 0.821 

Format The information provided by the analytics is ____ well formatted. 

The information provided by the analytics is ____ well laid out. 

The information provided by the analytics is ____ clearly presented on the screen. 

0.936 

0.933 

0.928 

0.952 0.952 0.869 

Accuracy The business analytics used: 

____ produces correct information. 

____ provides few errors in the information. 

____ provides accurate information.  

0.913 

0.886 

0.919 

0.894 0.896 0.742 

BDA satisfaction 

(BDAS) 

I am satisfied with my use of BDA service. 

I am contented with my use of BDA service. 

I am pleased with my use of BDA service. 

I am delighted with my use of BDA service. 

0.896 

0.879 

0.835 

0.890 

0.929 0.929 0.766 

Business value 

(BVAL) 

The BDA used by the firm: 

Creates competitive advantage. 

Aligns analytics with business strategy.  

Establishes useful links with other organizations. 

Enables quicker response to change. 

Improves customer relations. 

Provides better products or services to customers. 

0.847 

0.859 

0.813 

0.909 

0.834 

0.795 

 

0.937 0.937 0.712 

   *items eliminated due to low factor loadings or cross loadings. 
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Table 4. Mean, Standard Deviation (SD) and correlations of the latent variables for the first order constructs* 
 

Constructs 

 

Mean SD SYRE SYAD SYIN SYPR COMP CURR FORM ACCU BVAL BDAS 

System Reliability 

(SYRE) 

4.894 1.008 0.932*          

System 

Adaptability 

(SYAD) 

4.858 1.145 0.441 0.907*         

System Integration  

(SYIN) 

5.045 1.139 0.343 0.451 0.923* 

 

       

System Privacy  

(SYPR) 

5.138 1.167 0.503 0.563 0.426 0.927*       

Completeness 

(COMP) 

4.772 1.117 0.477 0.559 0.553 0.565 0.871*      

Currency 

(CURR) 

5.084 1.081 0.684 0.563 0.659 0.523 0.601 0.906*     

Format  

(FORM) 

5.073 1.127 0.540 0.516 0.429 0.578 0.532 0.658 0.932*    

Accuracy 

(ACCU) 

4.997 1.047 0.523 0.465 0.585 0.487 0.513 0.664 0.534 0.861*   

Business Value 

(BVAL) 

5.035 1.018 0.446 0.441 0.559 0.518 0.538 0.621 0.542 0.510 0.844*  

BDA satisfaction 

(BDAS) 

4.897 1.022 0.558 0.533 0.381 0.591 0.590 0.601 0.537 0.529 0.414 0.875* 

*square root of AVE on the diagonal 

 

 

 

 

 



   

 

 

Table 5: Assessment of the higher-order, reflective-formative model 

 

Third-order Formative 

construct 

Relationships with 

second-order dimensions 

β t-stat 

 

 

BDAQ 

 

Technology quality  

Information quality  

0.583 

0.487 

 

8.278 

7.122 

 

Second-order Formative 

constructs 

Relationships with first-

order dimensions 

β t-stat 

 

Technology quality 

 

System reliability  

System adaptability 

System integration 

System privacy  

0.394 

0.274 

0.307 

0.158 

 

4.909 

3.289 

3.827 

2.493 

 

Information quality 

 

Completeness 

Currency 

Format 

Accuracy 

 

0.268 

0.374 

0.259 

0.235 

4.086 

4.388 

3.078 

2.978 

 

 

 

Table 6. Results of the structural model 

Paths Path coefficients 

 

Standard error t statistic 

 

 BDAQ                              BVAL 

 BVAL                               BDAS 

 BDAQ                               BDAS 

 

 

 

0.797 

0.175 

0.681 

 

0.028 

0.073 

0.065 

 

 

 

28.504 

 2.403 

 10.454 
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Figure 1. Big Data Analytics Quality Model 
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Figure 2. Structural Model 
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